Conversion of other bases to denary system. To convert numbers in the other bases to denary system, expand the given number in power of its bases.
Examples:
- Convert 35416 to denary
35416 = 3 x 162 + 5 X 161 + 4 x 160
= 3 x 256 + 5 x 16 + 4 x 1
= 768 + 80 + 4
852ten
- Convert 255eight to base ten
2558 = 2 x 82 + 5 x 81 + 5 x 80
= 2 x 64 + 5 x 8 + 5 x 1
= 128 + 40 + 5
= 173ten
- Convert 10110012 to base ten
1011001two = 1 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20
= 1 x 64 + 0 x 32 + 1 x 16 + 1 x 8 + 0 X 4 + 0 x 2 + 1 x 1
= 64 + 0 + 16 + 8 + 0 + 0 +1
= 89ten
- Convert 3A716 to base ten
3A716 = 3 x 162 + 10 x 161 + 7 x 160
= 3 x 256 + 10 x 16 + 7 x 1
= 768 + 160 + 7
= 935ten
ADDITION, SUBTRACTION AND MULTIPLICATION OF BINARY NUMBERS
There are four rule guiding binary addition
0 + 0 = 0
0 + 1 = 1 (Always remember you are working with binary digit not decimal)
1 + 0 = 1
1 + 1 = 10
- Add 1012 + 10002
- Add 10011012 + 1110012
- 1012
+ 10002
11012
- 10011012
+ 1110012
100001102
Binary Subtraction
0 – 0 = 0; 0 – 1 = 1; 1 – 0 = 1; 1 – 1 = 0
(1). Subtract 1012 from 10012 (2). 100012 – 11112
- 10012
– 1012
1002
- 10001
– 1111
00102
Binary Multiplication
The rules for binary multiplication are: 0 x0 = 0; 1 x 0 = 0; 0 x 1 = 0; 1 x 1 = 1
(1).11012 x 1102 (2). 1012 x 102
- 11012
x 1102
00002
+ 11012
11012
10011102
- 1012
x 102
0002
+ 1012
10102
Decimal | Binary | Octal | Hexadecimal |
0 | 0000 | 0 | 0 |
1 | 0001 | 1 | 1 |
2 | 0010 | 2 | 2 |
3 | 0011 | 3 | 3 |
4 | 0100 | 4 | 4 |
5 | 0101 | 5 | 5 |
6 | 0110 | 6 | 6 |
7 | 0111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
EVALUATION
- Define number base
- Convert the following to base 10
- 10011two
- 317eight
- Evaluate the following:
- 1012 x 1012
- 1110012 + 10012
- 101112 – 1002